1 Leetcodegaogaotwo 1.1 链表 |
1.1.1 分割链表 |
1.1.2 反转链表 |
1.1.3 快慢指针 链表的中间节点 |
1.1.4 链表的倒数第k个节点 |
1.1.5 回文链表 |
1.1.6 链表的删除 |
1.1.7 链表反转2 |
1.1.8 链表的第一个相交节点 |
1.2 dfs |
1.2.1 岛屿数量 |
1.2.2 机器人的运动范围 |
1.2.3 字符串的全排列(回溯算法) |
1.2.4 判断一个数字是否可以表示成三的幂的和 |
1.2.5 不同路径III dfs+回溯 |
1.2.6 组合总和 dfs+回溯 |
1.2.7 子集 dfs or 状态枚举 |
1.3 bfs |
1.4 双指针 |
1.4.1 奇数在前,偶数在后 |
1.5 二维矩阵的前缀和 |
1.5.1 1074. 元素和为目标值的子矩阵数量 |
1.5.2 304. 二维区域和检索 - 矩阵不可变 |
1.6 数组变化 |
1.6.1 大数加减法 |
1.6.2 717. 1 比特与 2 比特字符 |
1.7 排序算法 |
1.7.1 把数组排成最小的数 |
1.7.2 根据字符出现的次数频率进行排序 |
1.7.3 最大数 |
1.7.4 969. 煎饼排序 |
1.8 dp动态规划 |
1.8.1 斐波那契数列 |
1.8.2 俄罗斯套娃信封问题 |
1.8.3 分割回文串 |
1.8.4 01背包 |
1.8.5 打家劫舍II |
1.8.6 青蛙过河 |
1.8.7 最长回文子串 |
1.8.8 目标和 (01背包) |
1.8.9 最大子序和 |
1.9 滑动窗口 |
1.9.1 绝对差不超过限制的最长连续子数组 |
1.9.2 三数之和 |
1.10 二叉树性质 |
1.10.1 二叉树的最小深度 |
1.10.2 二叉树的层次遍历 |
1.10.3 二叉树的镜像翻转 |
1.10.4 二叉树的最大深度 |
1.10.5 二叉搜索树节点最小距离 |
1.10.6 二叉树重构从小到达 按照->right情况 |
1.10.7 二叉搜索数的范围和 |
1.10.8 N叉树的前序遍历 |
1.11 递归 |
1.11.1 1+2...+n |
1.12 并查集 |
1.12.1 并查集连通分量 |
1.12.2 并查集城市连通 |
1.13 堆栈 |
1.13.1 通过队列来实现栈 |
1.13.2 下一个更大元素 II |
1.13.3 删除字符串中的所有相邻重复项 |
1.13.4 基本计算机 |
1.13.5 计算机 |
1.13.6 逆波兰表达式 |
1.13.7 接雨水 |
1.13.8 柱状图中最大矩形面积 |
1.13.9 反转每对括号间的子串 |
1.14 队列(or 优先队列) |
1.14.1 最大平均通过率 |
1.14.2 最大的团队表现值 |
1.14.3 找出第K大的异或坐标值 |
1.14.4 1.2滑动窗口的最大值 |
1.14.5 二叉搜索数的范围和 |
1.14.6 员工的重要性 |
1.15 Hash查询匹配 |
1.15.1 猜灯谜 |
1.15.2 720. 词典中最长的单词 |
1.16 前缀树 |
1.16.1 实现Trie(前缀树) |
1.16.2 添加与搜索单词 - 数据结构设计 |
1.17 位运算 |
1.17.1 比特位计数 |
1.17.2 不用加减乘除做加法 |
1.17.3 可被 5 整除的二进制前缀 |
1.17.4 汉明距离总和 |
1.18 二分法 |
1.18.1 在D天内送达包裹的能力 |
1.18.2 第一个错误的版本 |
1.19 数据结构性质 |
1.20 回溯法思想 |
1.21 字符串处理(模拟) |
1.21.1 Excel 表列序号进制转换 |
1.21.2 838.推多米诺 |
1.22 模拟 |
1.23 数学定理 |
1.23.1 1828. 统计一个圆中点的数目 |
剑指 Offer 52. 两个链表的第一个公共节点 输入两个链表,找出它们的第一个公共节点。
如下面的两个链表:
在节点 c1 开始相交。
示例 1:
输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3 输出:Reference of the node with value = 8 输入解释:相交节点的值为 8 (注意,如果两个列表相交则不能为 0)。从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,0,1,8,4,5]。在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。
示例 2:
输入:intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1 输出:Reference of the node with value = 2 输入解释:相交节点的值为 2 (注意,如果两个列表相交则不能为 0)。从各自的表头开始算起,链表 A 为 [0,9,1,2,4],链表 B 为 [3,2,4]。在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。
示例 3:
输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2 输出:null 输入解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。 解释:这两个链表不相交,因此返回 null。
注意:
如果两个链表没有交点,返回 null. 在返回结果后,两个链表仍须保持原有的结构。 可假定整个链表结构中没有循环。 程序尽量满足 O(n) 时间复杂度,且仅用 O(1) 内存。
思想主要采用一个堆栈(先进后出)的性质,将链表节点入栈,进而的去判断,看是否 节点的地址指针是否是相同的
/** * Definition for singly-linked list. * struct ListNode { * int val; * ListNode *next; * ListNode(int x) : val(x), next(NULL) {} * }; */ class Solution { public: /* 先采用链表反转,然后从后往前依次的做比较 如果两个链表没有交点,返回 null. 在返回结果后,两个链表仍须保持原有的结构。 可假定整个链表结构中没有循环。 程序尽量满足 O(n) 时间复杂度,且仅用 O(1) 内存。
*/ ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) { if(!headA || !headB) return nullptr; stack<ListNode*>a,b; ListNode* tep; tep = headA; while(tep){ a.push(tep); tep = tep->next; } tep = headB; while(tep){ b.push(tep); tep = tep->next; } if(a.top() != b.top()) return nullptr; while(!a.empty() && !b.empty()){ tep = a.top(); ListNode* t1 = a.top(); a.pop(); ListNode* t2 = b.top(); b.pop(); // 首先有两种情况需要判定一下 当 弹出后,可能存在 a,b 栈为空的情况下,这时候 判定, 若两个栈都不为空的情况下 printf 即可 if(t1 == t2 && (a.empty() || b.empty())) return t1; if(t1 == t2 && !a.empty() && !b.empty() && a.top() != b.top()) return t1; } return nullptr; } // ListNode *reverseL(ListNode* head){ // if(!head || !head->next) return head; // ListNode* a = head; // ListNode* b = NULL; // ListNode* p = head; // while(p){ // a = p; // p = p->next; // a->next = b; // b = a; // } // return a; // } }; |
|